
Optimizing Queries Using Materialized Views:
A Practical, Scalable Solution
Microsoft Research

4th March, 2025

Presented by: Yash Bhisikar

Prereqs: Views

Examples of creating a view and querying it

Problem Statement

Given a relational expression in SPJG form, find all materialized (SPJG)

views from which the expression can be computed and, for each

view found, construct a substitute expression equivalent to the

given expression.

Keywords: (SPJG == Select, Project, Join, GroupBy)

Key Contributions:

1. A fast view-matching algorithm: identifying which materialized
views can be used to “answer” a query

2. Scalability: A filter tree index to quickly prune away the views
irrelevant to the optimization, performant with 1000+ views

3. Integration with cost-based optimizers: Allowing query
rewrites (on SQL Server) to compete in the normal optimization
process

When is a query expression computable from a view?

1. The view contains all rows needed by the query expression
2. All required rows can be selected from the view
3. All output expressions can be computed from the output of the

view
4. All output rows occur with the correct duplication factor

Column equivalence classes - I

1. Letʼs say we have a selection predicate: W = P1 ∧ P2 ∧ P3 … ∧ Pn
2. We split the conjuncts as W = PE ∧ PNE

a. PE contains column equality predicates, Ti.Cp = Tj.Cq (Ti & Tj are tables, Cp and
Cq are corresponding column references)

b. PNE contains the remaining predicates
3. After the PE predicates are applied, we will get “connected

components”, or equivalence classes, of columns. These can be
interchangeably used in PNE predicates and output expressions.

Column equivalence classes - II

Advantages:

1. Can reroute column
references within the
query/view

2. Use an index on any one of the
columns from a class to avoid
redundant checks

Do all the required rows exist in the view?

Tackling the where clause

1. Given: T1, T2, T3 … Tm are the tables. Wq is the where clause in the
query, whereas Wv is the where clause in the view

2. The view contains all the rows that the query needs if: Wq ⇒ Wv (logical
implication)

3. Write Wq = Pq,1∧ Pq,2∧ …∧ Pq,m and Wv = Pv,1∧ Pv,2∧ …∧ Pv,n

We need a quick way to decide whether the implication holds

Deciding whether the implication holds - I

● Naive way: check that every conjunct Pv,i in Wv matches a conjunct Pv,i in
Wq

a. Devil is in the details: Syntactic match, String comparison, Commutativity/Transitivity
b. Eg:
c. This ensures completeness, but comes at the cost of sophistication and computation time

● Do we really need complete correctness?
● False Negatives (deciding that view cannot be used for the query, when it

actually can be) are still preferable over False Positives(deciding that view
can be used for the query, when it actually cannot be)

● The trick: We trade off completeness for speed

Deciding whether the implication holds - II

1. Rewrite the implication as PEq ∧ PRq ∧ PUq ⇒ PEv ∧ PRv ∧ PUv

Where Wq is split up as follows (Wv is split up similarly) :
a. PEq consists of all column equality predicates (Ti.Cp = Tj.Cr),
b. PRq contains range predicates (Ti.Cp op c) , and
c. PUq is the residual predicate.

2. Using rules of boolean algebra, we rewrite it as:

(PEq ∧ PRq ∧ PUq ⇒ PEv) ∧ (PEq ∧ PRq ∧ PUq ⇒ PRv) ∧ (PEq ∧ PRq ∧ PUq ⇒ PUv)

Deciding whether the implication holds - III

● Observe that we can drop some of the antecedents to make the tests stronger (A ⇒ C)
⇒ (AB ⇒ C) , and not vice-versa
1. PEq ⇒ PEv (Equijoin subsumption test)
2. PEq ∧ PRq ⇒ PRv (Range subsumption test)
3. PEq ∧ PUq ⇒ PUv (Residual subsumption test)

● These tests are stronger than their original versions, but we will miss out on different
cases
Eg: by dropping PRq from the antecedent of the equijoin test we will miss cases when
the query equates two columns to the same constant, say,
(A = 2) ∧ (B = 2) and the view contains the weaker predicate (A = B)

● Similar problems with the other tests

Summary of the three tests
Equijoin Subsumption Test

Goal: Ensure the viewʼs join conditions
are compatible with the queryʼs.

How: Check if every column
equivalence in the view (e.g., A = B) is
also enforced by the query, either
directly or transitively.

What it assures: The view doesnʼt miss
any equality constraints required by the
query.

Example: If the view equates A = B and
B = C, the query must imply the same
(e.g., via A = C).

Range Subsumption Test

Goal: Ensure the viewʼs range predicates
(e.g., col > 100) are at least as permissive
as the queryʼs.

How: Compare numeric/date ranges (e.g.,
view has col ≥ 50, query needs col ≥ 100).
The viewʼs range must fully cover the
queryʼs range.

What it assures: The view doesnʼt exclude
rows the query requires.

Example: If the query filters price
BETWEEN 150 AND 200, the view must
include this range (e.g., price ≥ 100).

Residual Subsumption Test

Goal: Ensure the viewʼs non-join,
non-range predicates (e.g., LIKE clauses)
match the queryʼs.

How: Check if every residual predicate in
the view (e.g., p_name LIKE '%steel%')
exists in the query.

What it assures: The view doesnʼt filter
out rows the query needs due to stricter
conditions.

Example: If the view has p_name LIKE
'%steel%, the query must include this
predicate.

Some other tests …

1. Can the required rows be selected?
2. Can output expressions be computed?
3. Do rows occur with correct duplication factor?

And a worked out example in the paper!

Views With Extra Tables

Core approach: identify cardinality preserving joins with the non-null foreign key
constraints

Steps:

1. Foreign-Key Join Graph: A directed graph is built where edges represent joins
between tables that meet strict criteria (equijoin on non-null foreign keys
referencing unique keys).

2. Elimination of Extra Tables: The algorithm iteratively removes extra tables by
checking if they can be "pruned" via these validated joins. If all extra tables are
eliminated through this process, the view is deemed compatible

Fast Filtering of Views - The Filter Index Tree - I
1. in-memory index structure designed to efficiently narrow down candidate materialized views
2. Structure:

a. Multiway search tree with leaves at the same level
b. Nodes contain (key, pointer) pairs where keys are sets of values
c. Uses lattice indexes internally to organize keys via subset/superset relationships

3. Partitioning Conditions
a. Source Tables: Requires view tables ⊆ query tables (via lattice index on table sets)
b. Hub Condition: Checks if view's minimal table set (after eliminating extra tables via FK joins) ⊆

query tables
c. Output Columns: Verifies query columns exist in view's output (expanded via equivalence classes)
d. Grouping Columns: Ensures query grouping columns ⊆ view grouping columns (with FD

awareness)
e. Residual Predicates: Requires view's non-join/range predicates ⊆ query predicates
f. Range Constraints: Checks view ranges contain query ranges (via equivalence class ranges)

Fast Filtering of Views - The Filter Index Tree - II

Key Optimizations in a nutshell

● Lattice indexes enable fast subset/superset checks without linear
scans

● Compares text signatures for expressions/predicates (with column
equivalence awareness)

● Progressively prunes candidates across multiple constraint
dimensions(partition conditions)

Results - I

Results - II

