
Optimizing Queries Using Materialized Views:
A Practical, Scalable Solution
Microsoft Research

4th March, 2025

Presented by: Yash Bhisikar



Prereqs: Views

Examples of creating a view and querying it



Problem Statement

Given a relational expression in SPJG form, find all materialized (SPJG)

views from which the expression can be computed and, for each

view found, construct a substitute expression equivalent to the

given expression.

Keywords: (SPJG == Select, Project, Join, GroupBy)



Key Contributions:

1. A fast view-matching algorithm: identifying which materialized 
views can be used to “answer” a query

2. Scalability: A filter tree index to quickly prune away the views 
irrelevant to the optimization, performant with  1000+ views

3. Integration with cost-based optimizers: Allowing query 
rewrites (on SQL Server) to compete in the normal optimization 
process 



When is a query expression computable from a view?

1. The view contains all rows needed by the query expression
2. All required rows can be selected from the view
3. All output expressions can be computed from the output of the 

view
4. All output rows occur with the correct duplication factor



Column equivalence classes - I

1. Letʼs say we have a selection predicate: W = P1 ∧ P2 ∧ P3 … ∧ Pn 
2. We split the conjuncts as W = PE ∧ PNE

a. PE contains column equality predicates, Ti.Cp = Tj.Cq (Ti & Tj are tables, Cp and 
Cq are corresponding column references)

b. PNE contains the remaining predicates
3. After the PE predicates are applied, we will get “connected 

components”, or equivalence classes, of columns. These can be 
interchangeably used in PNE predicates and output expressions.



Column equivalence classes - II

Advantages:

1. Can reroute column 
references within the 
query/view

2. Use an index on any one of the 
columns from a class to avoid 
redundant checks



Do all the required rows exist in the view?

Tackling the where clause

1. Given: T1, T2, T3 … Tm  are the tables. Wq is the where clause in the 
query, whereas Wv is the where clause in the view

2. The view contains all the rows that the query needs if: Wq ⇒ Wv (logical 
implication)

3. Write Wq = Pq,1∧ Pq,2∧ …∧ Pq,m and Wv = Pv,1∧ Pv,2∧ …∧ Pv,n

We need a quick way to decide whether the implication holds



Deciding whether the implication holds - I

● Naive way: check that every conjunct Pv,i  in Wv matches a conjunct Pv,i  in 
Wq

a. Devil is in the details: Syntactic match, String comparison, Commutativity/Transitivity
b. Eg: 
c. This ensures completeness, but comes at the cost of sophistication and computation time

● Do we really need complete correctness? 
● False Negatives (deciding that view cannot be used for the query, when it 

actually can be) are still preferable over False Positives(deciding that view 
can be used for the query, when it actually cannot be)

● The trick: We trade off completeness for speed



Deciding whether the implication holds - II

1. Rewrite the implication as   PEq ∧ PRq ∧ PUq ⇒  PEv ∧ PRv ∧ PUv

Where Wq is split up as follows (Wv is split up similarly) : 
a. PEq consists of all column equality predicates (Ti.Cp = Tj.Cr), 
b. PRq contains range predicates (Ti.Cp op c) , and
c. PUq is the residual predicate. 

2. Using rules of boolean algebra, we rewrite it as: 

( PEq ∧ PRq ∧ PUq ⇒ PEv  ) ∧ ( PEq ∧ PRq ∧ PUq ⇒ PRv  ) ∧ ( PEq ∧ PRq ∧ PUq ⇒ PUv )



Deciding whether the implication holds - III

● Observe that we can drop some of the antecedents to make the tests stronger (A ⇒ C) 
⇒ (AB ⇒ C) , and not vice-versa
1. PEq ⇒ PEv   (Equijoin subsumption test)
2. PEq ∧ PRq ⇒ PRv  (Range subsumption test)
3. PEq ∧ PUq ⇒ PUv  (Residual subsumption test)

● These tests are stronger than their original versions, but we will miss out on different 
cases
Eg: by dropping PRq from the antecedent of the equijoin test we will miss cases when 
the query equates two columns to the same constant, say,
(A = 2) ∧ (B = 2) and the view contains the weaker predicate (A = B)

● Similar problems with the other tests



Summary of the three tests
Equijoin Subsumption Test

Goal: Ensure the viewʼs join conditions 
are compatible with the queryʼs.

How: Check if every column 
equivalence in the view (e.g., A = B) is 
also enforced by the query, either 
directly or transitively.

What it assures: The view doesnʼt miss 
any equality constraints required by the 
query.

Example: If the view equates A = B and 
B = C, the query must imply the same 
(e.g., via A = C).

Range Subsumption Test

Goal: Ensure the viewʼs range predicates 
(e.g., col > 100) are at least as permissive 
as the queryʼs.

How: Compare numeric/date ranges (e.g., 
view has col ≥ 50, query needs col ≥ 100). 
The viewʼs range must fully cover the 
queryʼs range.

What it assures: The view doesnʼt exclude 
rows the query requires.

Example: If the query filters price 
BETWEEN 150 AND 200, the view must 
include this range (e.g., price ≥ 100).

Residual Subsumption Test

Goal: Ensure the viewʼs non-join, 
non-range predicates (e.g., LIKE clauses) 
match the queryʼs.

How: Check if every residual predicate in 
the view (e.g., p_name LIKE '%steel%') 
exists in the query.

What it assures: The view doesnʼt filter 
out rows the query needs due to stricter 
conditions.

Example: If the view has p_name LIKE 
'%steel%, the query must include this 
predicate.



Some other tests … 

1. Can the required rows be selected?
2. Can output expressions be computed?
3. Do rows occur with correct duplication factor?

And a worked out example in the paper!



Views With Extra Tables

Core approach: identify cardinality preserving joins with the non-null foreign key 
constraints

Steps:

1. Foreign-Key Join Graph: A directed graph is built where edges represent joins 
between tables that meet strict criteria (equijoin on non-null foreign keys 
referencing unique keys).

2. Elimination of Extra Tables: The algorithm iteratively removes extra tables by 
checking if they can be "pruned" via these validated joins. If all extra tables are 
eliminated through this process, the view is deemed compatible



Fast Filtering of Views - The Filter Index Tree - I
1. in-memory index structure designed to efficiently narrow down candidate materialized views 
2. Structure: 

a. Multiway search tree with leaves at the same level
b. Nodes contain (key, pointer) pairs where keys are sets of values
c. Uses lattice indexes internally to organize keys via subset/superset relationships

3. Partitioning Conditions
a. Source Tables: Requires view tables ⊆ query tables (via lattice index on table sets)
b. Hub Condition: Checks if view's minimal table set (after eliminating extra tables via FK joins) ⊆ 

query tables
c. Output Columns: Verifies query columns exist in view's output (expanded via equivalence classes)
d. Grouping Columns: Ensures query grouping columns ⊆ view grouping columns (with FD 

awareness)
e. Residual Predicates: Requires view's non-join/range predicates ⊆ query predicates
f. Range Constraints: Checks view ranges contain query ranges (via equivalence class ranges)



Fast Filtering of Views - The Filter Index Tree - II

Key Optimizations in a nutshell

● Lattice indexes enable fast subset/superset checks without linear 
scans

● Compares text signatures for expressions/predicates (with column 
equivalence awareness)

● Progressively prunes candidates across multiple constraint 
dimensions(partition conditions)



Results - I



Results - II


