Optimizing Queries Using Materialized Views:
A Practical, Scalable Solution

Microsoft Research

4th March, 2025

Presented by: Yash Bhisikar

Prereqs: Views

CREATE VIEW SalesSummary2025 AS
SEISEE)
p.product_name,
c.category_name,
SUM(od.quantity) AS total_units_sold,
SUM(od.quantity * p.unit_price) AS total_revenue,
COUNT(DISTINCT o.order_1id) AS total _orders
FROM
orders o
JOIN order_details od ON o.order_id = od.order_1id
JOIN products p ON od.product_id = p.product_id
JOIN categories c ON p.category_id = c.category_1id
WHERE
o.order_date BETWEEN '2025-01-01' AND '2025-03-04'
GROUP BY
p.product_name, c.category_name

CREATE MATERIALIZED VIEW DailySalesCache
REFRESH EVERY 1 HOUR
AS
SELECT
order_date,
SUM(quantity * unit_price) AS daily_total
FROM orders
JOIN order_details USING (order_id
GROUP BY order_date;

SELECT * FROM SalesSummary2025
ORDER BY total _revenue DESC
LIMIT 10;

Examples of creating a view and querying it

Problem Statement

Given a relational expression in SPJG form, find all materialized (SPJG)
views from which the expression can be computed and, for each
view found, construct a substitute expression equivalent to the

given expression.

Keywords: (SPJG == Select, Project, Join, GroupBy)

Key Contributions:

1. Afast view-matching algorithm: identifying which materialized
views can be used to “answer” a query

2. Scalability: A filter tree index to quickly prune away the views
irrelevant to the optimization, performant with 1000+ views

3. Integration with cost-based optimizers: Allowing query

rewrites (on SQL Server) to compete in the normal optimization
process

When is a query expression computable from a view?

1.

The view contains all rows needed by the query expression

All required rows can be selected from the view

All output expressions can be computed from the output of the
view

All output rows occur with the correct duplication factor

Column equivalence classes - |

1. Let’s say we have a selection predicate: W=P, AP, AP,... AP

2. We split the conjuncts as W=PE A PNE

a. PE contains column equality predicates, TGC = Tj.Cq (T.& Tj are tables, Cpand
anre corresponding column references)
b. PNE contains the remaining predicates

3. After the PE predicates are applied, we will get “connected
components”, or equivalence classes, of columns. These can be
interchangeably used in PNE predicates and output expressions.

Column equivalence classes - li

Advantages:
1. Canreroute column SELECT *
. . FROM employees
references W|th|n the JOIN salaries ON employees.id = salaries.employee_id
. WHERE employees.id = 100;
query/view

2. Useanindex on any one of the
SELECT *

1 FROM student
COlumnS from a ClaSS to aVOId JOIN ;r:dgz (SJN students.student_id = grades.student_id
redundant checks

JOIN attendance ON grades.student_id = attendance.student_id

Do all the required rows exist in the view?

Tackling the where clause

1. Given:T,T,T,...T arethetables. Wq is the where clause in the
query, whereas W is the where clause in the view

2. Theview contains all the rows that the query needs if: w, =W, (logical
implication)

3. Write Wq:Pq,l/\ Pq}/\ A\ P,nand WV:PV’J/\ Pv,z/\ A P,

We need a quick way to decide whether the implication holds

Deciding whether the implication holds - |

Naive way: check that every conjunct P . in W matches a conjunct P . in

W
q

a. Devilisin the details: Syntactic match, String comparison, Commutativity/Transitivity

b. Eg (é—g)xl():Bx?—AxS
c. Thisensures completeness, but comes at the cost of sophistication and computation time

Do we really need complete correctness?

False Negatives (deciding that view cannot be used for the query, when it
actually can be) are still preferable over False Positives(deciding that view
can be used for the query, when it actually cannot be)

The trick: We trade off completeness for speed

Deciding whether the implication holds - Il

1. Rewrite the implication as PE, A PR, A PU, = PE, APR APU,

Where Wq is split up as follows (W is split up similarly) :
a. PEq consists of all column equality predicates (T,..Cp = T/..C,),
b. PRq contains range predicates (T, Cp opc),and

C. PUq is the residual predicate.

2. Usingrules of boolean algebra, we rewrite it as:

(PE,APR APU =PE)A(PE,APR APU =PR)A(PE._APR APU =PU)

Deciding whether the implication holds - 1lI

e Observe that we can drop some of the antecedents to make the tests stronger (A = C)
= (AB = C) , and not vice-versa

1. PEq = PE (Equijoin subsumption test)
2. PEq A PRq = PR, (Range subsumption test)
3. PEq 4\ PUq =PU, (Residual subsumption test)

® These tests are stronger than their original versions, but we will miss out on different
cases
Eg: by dropping PRq from the antecedent of the equijoin test we will miss cases when
the query equates two columns to the same constant, say,
(A=2) A (B=2)and the view contains the weaker predicate (A=B)

e Similar problems with the other tests

Summary of the three tests

Equijoin Subsumption Test

Goal: Ensure the view’s join conditions
are compatible with the query’s.

How: Check if every column
equivalence in the view (e.g.,A=B) is
also enforced by the query, either
directly or transitively.

What it assures: The view doesn’t miss
any equality constraints required by the

query.

Example: If the view equates A=B and
B =C, the query must imply the same
(e.g.,viaA=C().

Range Subsumption Test

Goal: Ensure the view’s range predicates
(e.g., col>100) are at least as permissive
as the query’s.

How: Compare numeric/date ranges (e.g.,
view has col = 50, query needs col = 100).
The view’s range must fully cover the
query’s range.

What it assures: The view doesn’t exclude

rows the query requires.

Example: If the query filters price
BETWEEN 150 AND 200, the view must
include this range (e.g., price = 100).

Residual Subsumption Test

Goal: Ensure the view’s non-join,
non-range predicates (e.g., LIKE clauses)
match the query’s.

How: Check if every residual predicate in
the view (e.g., p_name LIKE '%steel%")
exists in the query.

What it assures: The view doesn’t filter
out rows the query needs due to stricter
conditions.

Example: If the view has p_name LIKE
'%steel%, the query must include this
predicate.

Some other tests ...

1. Canthe required rows be selected?
2. Can output expressions be computed?
3. Do rows occur with correct duplication factor?

And a worked out example in the paper!

Views With Extra Tables

Core approach: identify cardinality preserving joins with the non-null foreign key
constraints

Steps:

1. Foreign-Key Join Graph: A directed graph is built where edges represent joins
between tables that meet strict criteria (equijoin on non-null foreign keys
referencing unique keys).

2. Elimination of Extra Tables: The algorithm iteratively removes extra tables by
checking if they can be "pruned" via these validated joins. If all extra tables are
eliminated through this process, the view is deemed compatible

Fast Filtering of Views - The Filter Index Tree - |

1. in-memory index structure designed to efficiently narrow down candidate materialized views
2. Structure:
a. Multiway search tree with leaves at the same level
b. Nodes contain (key, pointer) pairs where keys are sets of values
c. Uses lattice indexes internally to organize keys via subset/superset relationships
3. Partitioning Conditions
a. Source Tables: Requires view tables & query tables (via lattice index on table sets)
b. Hub Condition: Checks if view's minimal table set (after eliminating extra tables via FK joins) &
query tables
c. Output Columns: Verifies query columns exist in view's output (expanded via equivalence classes)
d. Grouping Columns: Ensures query grouping columns & view grouping columns (with FD
awareness)
e. Residual Predicates: Requires view's non-join/range predicates & query predicates
f. Range Constraints: Checks view ranges contain query ranges (via equivalence class ranges)

Fast Filtering of Views - The Filter Index Tree - Il

Key Optimizations in a nutshell

e Lattice indexes enable fast subset/superset checks without linear

scans
e Compares text signatures for expressions/predicates (with column
equivalence awareness)
e Progressively prunes candidates across multiple constraint
dimensions(partition conditions)

Results - |

Figure 2: Optimization time as a function of Figure 3: Total increase in optimization time
the number of views. and time spent in view-matching rule
200
g 60
8 150 g 50
1 E 4
£ 1w 52 a0
P £+
Q.
S s0 e 2
g 10
0 - 0
0 200 400 600 800 1000 0 200 400 600 800 1000
- - <& - - Alt & No Filter - - % - -No Alt & No Filter No of views
—&— Alt & Filter —— No Alt & Filter
—&— Total increase —#— View matching time

Results - i

No of plans

Figure 4: No of final query plans using
materialized views.

1000
800
600
400
200

0
0 200 400 600 800

No of views

1000

