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Preliminaries



Why to Prune LLMs ?

e Reduces Inference Costs: Pruning removes unnecessary weights, making models smaller
and requiring less computational power and memory (VRAM) to run.

e Speeds up Inference: With fewer parameters to process, the model can generate outputs
faster. This reduces latency

e Deployment on Resource-Constrained Settings: Smaller models have a reduced memory
footprint, allowing them to be deployed on devices with limited resources (edge, I0T,

smartphones, etc.)
e Improves Energy Efficiency: Less computation means lower power consumption.

Drawing on the Lottery Ticket Hypothesis, pruning removes redundant connections, akin to
finding a smaller "winning ticket" subnetwork within the larger, unpruned model. This subnetwork
can achieve comparable or even slightly better performance by eliminating less critical, "noisy"
connections, leading to a significant reduction in model size with minimal to no loss.



Feature Structured Pruning Unstructured Pruning
Enti f t .g., whol
What It Prunes UTE grofips ot parameters Se &, Whoie neurons, Individual weights.
channels, or attention heads).
Sparsity Pattern Regular and dense-like. Irregular, highly sparse.

Inference Speed

Excellent speedups on any standard hardware, as
the pruned model is smaller and still dense.

Poor speedups on standard hardware. Requires
specialized software or hardware.

Can have a more significant drop in accuracy at
high sparsity levels because it removes whole

Highest for a given sparsity level, as it can remove

Accuracy . . T .
components, which may contain important the most insignificant weights.
weights.
i SparseGPT: A one-shot, unstructured method
LLM-Pruner: A framework for structured pruning . )
) that prunes by minimizing a layer-wise
that removes attention heads and FFN layers. .

approximation error.

Examples

DISP-LLM: A method that increases the flexibility
of structured pruning.

Wanda: Prunes weights by a criterion combining
weight magnitude and input activations.




Why the Naive
Approach Fails



Residual connections create structural dependency along the
embedding dimension
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The Problem in Action - |

Goal: Allow each layer to have its own selection matrix S along embedding dimension, allowing
each layer to prune differently

Problem: Residual connections require alignment between consecutive layers

Setup:

1. The model has a small embedding dimension of d = 8. A feature map X passing through the
network would be a vector of 8 values: [x1, x2, x3, x4, x5, X6, X7, x8]

2. ForlayerL, we decide to keep the first 4 features: S _=diag([1,1,1,1,0,0,0,0])
3. ForlayerL+1, we decide to keep the features 3-6: S | = diag([0,0,1,1,1,1,0,0])
4. The width of each layer is the number of non-zero entries: nnz(S ) = nnz(S

) =4



The Problem in Action - i

1. Inputarrives from Layer L: This vector is now aligned to Layer L's mask. Residual Path = [x1, x2, x3, x4, 0, 0, 0, 0]
2. Block Path for Layer L + 1: This block needs to be pruned by its own mask, which is aligned to [0, 0, 1,1, 1, 1, 0, 0]
3. The Conflict: The residual connection for Layer L+1 is:
X ,, =X+ Block""*(X )
Here's the mismatch:

e The left side of the addition, X , is a vector living in the subspace defined by mask S,.
e Therightside of the addition, BlockL”(XL), is a vector living in the subspace defined by mask S , .

SLT @S .. = diag([1x0,1x0,1x1,1x1,0x1,0x1,0x0,0%0])

L+1

S @$,,,= diag([0,0,1,1,0,0,0,0)

L+1

This is basically proposition 1 from the paper!

nnz(S'@ S ,,) < min{nnz(S ), nnz(S , )}

L+1



The Problem in Action - Il

Key Takeaways
e If we naively apply S, for different layers, the model width will progressively decrease as we

go deeper into the network.

e Italso fails to provide different sets of features for different layers; instead, it merely passes a
subset of features from the previous layer to the next.

e To avoid this restriction, all blocks must share the same width and the same pruned
columns or rows.

e To enhance flexibility along the embedding dimension, bypassing the residual connections is

crucial.



SliceGPT



Overview

e We wanttoinsert a change in the middle of the network without altering the final output
e SliceGPT finds the most important features flowing between transformer blocks and gets a

specific rotation matrix (QL) for each block-to-block connection.
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Procedure - |
The data flow from the output of Block L to the input of Block L+1.

e Start with the Output: We begin with X , the output activation of Block L. This is a matrix of size
[sequence_lengthxd_model].

e Rotate the Activations: We apply an orthogonal transformation (a rotation) to these activations
using a matrix Q. This Q_ is calculated using PCA on the activations X from a calibration dataset.
The new, rotated activationsare X '=X Q, .

e Slice (Prune) the Rotated Activations: Now that the important information is concentrated in the
first few columns, we can safely discard the rest. Our final, compressed activation is )N(L = (XLQL)S

This is the tensor that will be fed into the next block, Block L+1.



Procedure - Il

e Invert the Transformation on the Next Layer's Weights: We have changed the activations
from X to )”(L. To ensure the model's output doesn't change, we must apply an inverse
transformation to whatever consumes these activations.

o Thefirst thingin Block L+1 that processes )N(L is a weight matrix, let's call it W,
o The original computation was X W , .. Our new computation must be approximately
equal: X W =X W, .
o To achieve this, we modify the weights: W ,=57Q, "W ...
e The math checks out!
Y \A — S\(&TA T ~ T — —
XLWL+1_ (XLQLS)(S QL WL+1) - XI(QLQL )WL+1 B XL(I)WL+1_ XLWL+1

e The Problem: The input to the main path of Block L+1 is the transformed activation.
However, the residual connection is still carrying the original, untransformed X_We cannot
add these two together because they are in different coordinate systems!



Procedure - Il

SliceGPT must also transform the residual
connection so it "matches" the coordinate
system of the main path. Achieved by multiplying
the residual connection by a linear
transformation, QLTQL+1, before it can be correctly
processed within block L+1.

The drawback is that this matrix T=Q, 'Q,,, is a
dense dxd matrix. You need one such
transformation matrix for every block in the
model. Performing this matrix multiplication

X, ' T for every token at every residual connection
adds a significant number of computations (~
5-13 % of entire parameter count)

) ) %
Q/Q /] QW || Qiew, || @ieyw, Mult-Fead Lol w, MGZH Attention
7 7,

Inputs multiplied
by Q; and truncated




DISP-LLM: The Core
Details



Key Insight: Breaking Structural Dependency

e In methods like LLM-Pruner, if you prune a specific channel in one layer, you must prune that same
channelin all subsequent layers (re: corollary 1) because the residual connection adds the input
directly to the output.

e SliceGPT is able to avoid this but adds overhead with the residual transformations. It also does
not require any post-pruning fine tuning

e DISP-LLM is able to achieve flexibility in pruning without adding any extra parameters to the model
itself.

e How? Avoid altering the residual connection itself. It performs selection and merging operations
inside each block's main computational path. This is achieved through two new operations: Index
Select and Index Add.
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The Proposed Solution - |
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The Proposed Solution - Il

Attention(X) = MultiHead (XS, W, XS Wy, XS W, )W, S,
MLP(X) = (6(XS; W1S,4) © (XS] W,5,))Ss T W3Ss,

Algorithm 1: Block inference after pruning.

Input: Feature map of the previous block Xj,. Preserved indices sets Ind, Ind,, Inds, Inds.

1. X, = LayerNorm(Xj,[:, Ind; ]). o Index Selection for Attention
2. X, = MultiHead(X;, S| W, X;,ST Wy, X, ST W, )W, S,

3. Xjes = Index_Add(Xiy, Xam, Ind,). > Index Addition with the input
4. KXo = LayerNorm(Xes[:, Inds]). = Index selection for MLP
5. Xmlp = (O'(Xressgwl S4) @ (XreSS;WQS4))S4TW3S5.

6. Xou = Index_Add(Xres, Xpmip, Inds) > Index Addition with the residual

Return X, for the next block.




A Step-by-Step Example I: The Setup

e Letthe model'sembedding dimension be:d=4

e TheinputtoourblockisX € R" x4 asingle input vector could be X =[x}, X, X, X,]

e Let'ssaythis block's attention layer decides to use input dimensions {0, 2} and produce an
output that affects dimensions {0, 2}. So, its index sets are Ind1={0, 2} and Ind2 = {0, 2}

e The subsequent MLP layer decides to use input dimensions {1, 2, 3} and produce an output
that affects dimensions {0, 1, 3}. Its index sets are Ind3 ={1, 2, 3} and Ind5 ={0, 1, 3}

e Assume the set of indices (Ind1, Ind2, etc.) are given to us. We’ll go into details about how to

select them.



A Step-by-Step Example Il: Attention Calculation

e Before attention calculation, we select a subset of features from the input X, _

o X = X [:Ind1]=[x1, x3]. We take the columns specified by Ind1 = {0, 2} from X. . The attention

attn_in

mechanism now operates on this smaller feature space.

e The weight matrices (Wq, W,, W , W ) have been permanently pruned beforehand to match these
smaller dimensions. The original W & R#d-head hacomes a pruned qu R2*d-head by keeping only the
rows corr. to Ind1, output weights WO pruned to have columns corr. to Ind2

o X = Attention (X

attn_out

= [al, a2]

attn_in)

e Now, we add this low-dimensional output back to the original, full-dimensional input only at the

indices specified by Ind2 = {0, 2}. X . = Index_Add (Xin, X Ind2) = [x1+al, x2, x3 + a2, x4]

attn_out’



A Step-by-Step Example Ill: MLP Sub-block

Process repeats for the MLP, use the output of the attention
sub-block, X . asinput.

We use Ind3={1,2,3}=> X =X [:Ind3]=[x2,x3 + a2, x4]

mlp_in ~ Mres

The MLP's weight matrices are also pre-pruned to match the
dimensions defined by Ind3, Ind4 (intermediate), and Ind5

X = MLP(X

mip_out— =[m1, m2, m3]

mlp_in)
IndexAdd for MLP Residual: We have X o™ [x1+al, x2, x3+ a2, x4]
and Ind5={0,1,3}

X, = [X1+al+ml, x2+m2,x3+a2,x4+m3]

Thisfinal X is passed to the next block, still in the full d=4
dimension, ready for the next block to select its own independent
set of indices. This is how the structural dependence is broken.
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Figure 2: Our method, DISP-LLM, applies different
selection matrices to the input and output dimension
of the Attention layer and MLP layer (S;/S.: Atten-
tion in/out; S3/S,/S5: MLP in/middle/out). When
pruning the model, we add “Index Selection” before
Layer Norm and we replace addition with “Index
Add.” S;, -+, S5 are applied for pruning weight
matrices.




Learning Which Indices to Prune - |

e How do we find the optimal index sets (Ind1 to Ind5) for every layer? The search space is enormous

e Problem: Choosing to keep or discard an index is a binary decision, which is non-differentiable. You
can't use standard backpropagation to learn it.

e Proposed Solution: Use a gradient estimator. The paper uses ReinMax, which is a technique that
allows gradients to be estimated and passed through discrete, binary operations. This essentially
makes the non-differentiable selection process "trainable."

e Instead of learning separate parameters for every index in every layer, the authors use a small
hypernetwork (composed of a GRU and linear layers) to generate the selection parameters for the
entire model. This is allows the network to learn relationships between the pruning decisions of

different layers



Learning Which Indices to Prune - |l

Algorithm 2: Binary ReinMax

Input: z: sigmoid input;

T: temperature; c: constant bias.
Output: x: binary vector.

1. my = sigmoid(z + c),

2. B = sample_binary(m),
B+sigmoid((z+c) /1)

3. ™ = ,
4. m = sigmoid(zstop_gradient(1n(7r1) —(z+c¢)) + (z+c)),
5. M = 2m — o,

6. x = my — stop_gradient(ms) + B

Return x.




Learning Which Indices to Prune - il

The hypernetwork is trained to minimize a combined objective function

mein L(X;W,8)+ AR(T(s), pTiotal)

R(T(s), pTiota1) = log(max(T'(s), pTiota1)/ min(T'(s), pTiotal))

where:
1. Listhe standard language modeling loss (predicting the next word). This ensures the pruned model
remains accurate
2. srepresents the binary selection masks generated by the hypernetwork.
3. Risaregularization loss that penalizes the model if its current parameter count, T(s), is different

from the target parameter count, pT This pushes the model toward the desired sparsity level

total *
4, O represents the weights of the hypernetwork that we are optimizing



SliceGPT vs DISP-LLM
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Results
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Table 2: Comparison of our method against semi-structure pruning methods on WikiText-2.

. . Test Performance (PPL)
Method Pruning Ratio | W Update? | Structure? [IaMA 7B LLaMA 13B | LLaMA-2 7B LLaMA-2 13B
Dense 0% - - 5.68 5.09 5.12 4.57
Magnitude 2:4 X X 42.13 18.37 54.59 8.33
SparseGPT [9] 2:4 v X 11.00 9.11 10.17 8.32
Wanda [34] 2:4 X X 11.53 9.58 11.02 8.27
DISP-LLM (ours) 50% X v 11.47 8.15 9.84 7.11




Table 3: Zero-shot performance of the compressed LLaMA 7B, LLaMA-2 7B and Phi models. The
structure of DISP-LLM is based on the WikiText dataset, and the structure of DISP-LLM Alpaca is
based on the Alpaca dataset.

Pruning Ratio | Method W Update? WinoGrande HellaSwag  ARC-e ARC-c PIQA Avg
acc acc-norm  acc-norm  acc-norm  acc-norm
0% LLaMA 7B - 69.85 76.21 72.81 4471 79.16 68.55
LLM-Pruner [30] X 61.33 65.34 59.18 37.12 75.57 59.71
20% +finetuning v 65.11 68.11 63.43 37.88 76.44 62.19
DISP-LLM (Ours) X 66.54 68.75 59.60 35.24 74.97 61.02
DISP-LLM Alpaca (Ours) X 64.72 68.39 64.81 37.12 76.66 62.34
LLM-Pruner [30] X 53.20 35.64 33.50 27.22 59.63 41.84
50% +finetuning v 55.09 47.56 46.46 28.24 68.82 49.23
DISP-LLM (Ours) X 58.41 47.71 44.40 28.50 64.09 48.62
DISP-LLM Alpaca (Ours) X 56.91 48.76 48.91 31.57 67.46 50.72
0% LLaMA-2 7B - 69.14 75.99 74.58 46.15 79.11 68.99
SliceGPT [2] X 61.33 49.62 51.77 31.23 63.55 51.50
K-OBD [34] v 56.83 53.07 51.05 33.11 71.82 53.18
30% LLM Surgeon [34] v 61.09 60.72 63.09 36.69 73.56 59.03
DISP-LLM (Ours) X 62.27 63.43 59.81 33.19 71.82 58.10
DISP-LLM Alpaca (Ours) X 63.93 62.87 60.10 37.03 73.72 59.53
K-OBD [34] v 53.04 36.84 36.11 26.71 60.66 42.67
50% LLM Surgeon [34] v 52.57 40.29 4491 26.28 64.36 45.68
DISP-LLM (Ours) X 54.54 46.33 43.06 25.85 63.93 46.72
DISP-LLM Alpaca (Ours) X 56.20 49.35 51.14 30.20 68.34 51.05
0% Phi-1.5 - 72.77 62.58 73.11 48.04 75.63 66.43
30% SliceGPT [2] X 64.96 42.54 53.66 31.91 65.45 51.52
DISP-LLM (Ours) X 61.48 47.97 57.66 33.01 71.08 54.24
0% Phi-2 - 75.61 73.86 78.24 54.01 79.11 72.17
30% SliceGPT [2] X 63.14 47.56 53.03 30.29 65.94 51.99
DISP-LLM (Ours) X 65.19 54.43 63.59 38.48 73.34 59.00
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Depth

. . Pruning Decisions along the Model Dimension and Depth
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Figure 6: Model width after pruning for the LLaMA-2 7B model when the pruning ratio equals 50%.




Pruning Decisions along the Model Dimension and Depth
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Figure 8: The pruned model architecture along the embedding dimension (model dimension) for the
LLaMA-2 13B model when the pruning ratio equals 50%.
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Figure 9: Model width after pruning for the LLaMA-2 13B model when the pruning ratio equals
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Future Directions



The throughput improvements from the method are not consistent across all models. Authors
hypothesize that this is because the standard PyTorch implementations for index selection and
addition operations are not fully optimized

The current implementation focuses on selecting from feature maps, which involves indexing
overhead during every forward pass. An alternative, and potentially faster, approach would be to
pre-slice the weight matrices and use kernels that take advantage of zeroed rows/columns.

The hypernetwork itself could become a bottleneck in the search process for extremely large models.



Thank you + Q&A




