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Preliminaries



Why to Prune LLMs ?

● Reduces Inference Costs: Pruning removes unnecessary weights, making models smaller 
and requiring less computational power and memory (VRAM) to run.

● Speeds up Inference: With fewer parameters to process, the model can generate outputs 
faster. This reduces latency

● Deployment on Resource-Constrained Settings: Smaller models have a reduced memory 
footprint, allowing them to be deployed on devices with limited resources (edge, IOT, 
smartphones, etc.)

● Improves Energy Efficiency: Less computation means lower power consumption.

Drawing on the Lottery Ticket Hypothesis, pruning removes redundant connections, akin to 
finding a smaller "winning ticket" subnetwork within the larger, unpruned model. This subnetwork 
can achieve comparable or even slightly better performance by eliminating less critical, "noisy" 
connections, leading to a significant reduction in model size with minimal to no loss.



Feature Structured Pruning Unstructured Pruning

What It Prunes
Entire groups of parameters (e.g., whole neurons, 

channels, or attention heads).
Individual weights.

Sparsity Pattern Regular and dense-like. Irregular, highly sparse.

Inference Speed
Excellent speedups on any standard hardware, as 

the pruned model is smaller and still dense.
Poor speedups on standard hardware. Requires 

specialized software or hardware.

Accuracy

Can have a more significant drop in accuracy at 
high sparsity levels because it removes whole 

components, which may contain important 
weights.

Highest for a given sparsity level, as it can remove 
the most insignificant weights.

Examples

LLM-Pruner: A framework for structured pruning 
that removes attention heads and FFN layers.

DISP-LLM: A method that increases the flexibility 
of structured pruning.

SparseGPT: A one-shot, unstructured method 
that prunes by minimizing a layer-wise 

approximation error.

Wanda: Prunes weights by a criterion combining 
weight magnitude and input activations.



Why the Naive 
Approach Fails



Residual connections create structural dependency along the 
embedding dimension



The Problem in Action - I

Goal: Allow each layer to have its own selection matrix SL along embedding dimension, allowing 
each layer to prune differently

Problem: Residual connections require alignment between consecutive layers

Setup:

1. The model has a small embedding dimension of d = 8. A feature map X passing through the 
network would be a vector of 8 values: [x1, x2, x3, x4, x5, x6, x7, x8]

2. For layer L, we decide to keep the first 4 features: SL = diag([1,1,1,1,0,0,0,0])

3. For layer L+1, we decide to keep the features 3-6: SL+1 = diag([0,0,1,1,1,1,0,0])

4. The width of each layer is the number of non-zero entries: nnz(SL) = nnz(SL+1) = 4



The Problem in Action - II

1. Input arrives from Layer L: This vector is now aligned to Layer L's mask. Residual Path = [x1, x2, x3, x4, 0, 0, 0, 0]
2. Block Path for Layer L + 1: This block needs to be pruned by its own mask, which is aligned to [0, 0, 1, 1, 1, 1, 0, 0]
3. The Conflict: The residual connection for Layer L+1 is:

XL+1  = XL+ BlockL+1 (XL )

Here's the mismatch:

● The left side of the addition, XL, is a vector living in the subspace defined by mask SL .
● The right side of the addition, BlockL+1 (XL), is a vector living in the subspace defined by mask SL+1 .

SL
T @ SL+1 =  diag([1×0,1×0,1×1,1×1,0×1,0×1,0×0,0×0])

SL
T @ SL+1=  diag([0,0,1,1,0,0,0,0])

This is basically proposition 1 from the paper! 

nnz(SL
T @  SL+1)  ≤  min{nnz(SL), nnz(SL+1 )}



The Problem in Action - III

Key Takeaways

● If we naively apply SL for different layers, the model width will progressively decrease as we 

go deeper into the network. 

● It also fails to provide different sets of features for different layers; instead, it merely passes a 

subset of features from the previous layer to the next. 

● To avoid this restriction, all blocks must share the same width and the same pruned 

columns or rows.

● To enhance flexibility along the embedding dimension, bypassing the residual connections is 

crucial.



SliceGPT



Overview
● We want to insert a change in the middle of the network without altering the final output
● SliceGPT finds the most important features flowing between transformer blocks and gets a 

specific rotation matrix (QL ) for each block-to-block connection.



Procedure - I
The data flow from the output of Block L to the input of Block L+1.

● Start with the Output: We begin with XL, the output activation of Block L. This is a matrix of size 

[sequence_length×d_model ].

● Rotate the Activations: We apply an orthogonal transformation (a rotation) to these activations 

using a matrix QL. This QL  is calculated using PCA on the activations XL  from a calibration dataset. 

The new, rotated activations are XL′  = XLQL .

● Slice (Prune) the Rotated Activations: Now that the important information is concentrated in the 

first few columns, we can safely discard the rest. Our final, compressed activation is X̃L = (XL QL )Ŝ. 

This is the tensor that will be fed into the next block, Block L+1.



Procedure - II 

● Invert the Transformation on the Next Layer's Weights: We have changed the activations 
from XL to X̃L . To ensure the model's output doesn't change, we must apply an inverse 
transformation to whatever consumes these activations.

○ The first thing in Block L+1 that processes X̃L  is a weight matrix, let's call it WL+1
○ The original computation was XL WL+1 . Our new computation must be approximately 

equal: X̃́L W̃L+1  ≈ XLWL+1 .
○ To achieve this, we modify the weights: W̃L+1 = ŜTQL

T WL+1.

● The math checks out!
X̃LW̃L+1 = (XLQL Ŝ)(ŜTQL

T WL+1 ) ≈ Xl (QL QL
T )WL+1  = XL(I)WL+1 = XL WL+1

● The Problem: The input to the main path of Block L+1 is the transformed activation. 
However, the residual connection is still carrying the original, untransformed XL. We cannot 
add these two together because they are in different coordinate systems!



Procedure - III

● SliceGPT must also transform the residual 
connection so it "matches" the coordinate 
system of the main path. Achieved by multiplying 
the residual connection by a linear 
transformation, QL

T QL+1 , before it can be correctly 
processed within block L+1.

● The drawback is that this matrix T = QL
T QL+1  is a 

dense d×d matrix. You need one such 
transformation matrix for every block in the 
model. Performing this matrix multiplication 
XL ⋅T for every token at every residual connection 
adds a significant number of computations (~ 
5-13 % of entire parameter count)



DISP-LLM: The Core 
Details



Key Insight:  Breaking Structural Dependency

● In methods like LLM-Pruner, if you prune a specific channel in one layer, you must prune that same 
channel in all subsequent layers (re: corollary 1) because the residual connection adds the input 
directly to the output.

● SliceGPT is able to avoid this but adds overhead with the residual transformations. It also does 
not require any post-pruning fine tuning

● DISP-LLM is able to achieve flexibility in pruning without adding any extra parameters to the model 
itself. 

● How? Avoid altering the residual connection itself. It performs selection and merging operations 
inside each block's main computational path. This is achieved through two new operations: Index 
Select and Index Add.





The Proposed Solution - I



The Proposed Solution - II



A Step-by-Step Example I: The Setup

● Let the model's embedding dimension be: d = 4

● The input to our block is Xin ∈ Rn x 4, a single input vector could be xin =[x1 , x2 , x3 , x4 ]

● Let's say this block's attention layer decides to use input dimensions {0, 2} and produce an 

output that affects dimensions {0, 2}. So, its index sets are Ind1={0, 2} and Ind2 = {0, 2}

● The subsequent MLP layer decides to use input dimensions {1, 2, 3} and produce an output 

that affects dimensions {0, 1, 3}. Its index sets are Ind3  = {1, 2, 3} and Ind5  = {0, 1, 3}

● Assume the set of indices (Ind1, Ind2, etc.) are given to us. Weʼll go into details about how to 

select them.



A Step-by-Step Example II: Attention Calculation

● Before attention calculation, we select a subset of features from the input Xin

● Xattn_in =  Xin[ : Ind1] = [x1  , x3 ]. We take the columns specified by Ind1  = {0, 2} from Xin . The attention 

mechanism now operates on this smaller feature space. 

● The weight matrices (Wq , Wk , Wv , Wo ) have been permanently pruned beforehand to match these 

smaller dimensions. The original Wq ∈ R4×d_head  becomes a pruned W̃q ∈R2×d_head  by keeping only the 

rows corr. to Ind1 , output weights W̃o pruned to have columns corr. to Ind2 

● Xattn_out  = Attention (Xattn_in )  =  [a1,  a2]

● Now, we add this low-dimensional output back to the original, full-dimensional input only at the 

indices specified by Ind2  = {0, 2}. Xres  = Index_Add (Xin , Xattn_out , Ind2 ) = [x1  + a1 , x2 , x3  + a2 , x4 ]



A Step-by-Step Example III: MLP Sub-block
● Process repeats for the MLP, use the output of the attention 

sub-block, Xres  as input.

● We use Ind3  = {1, 2, 3} =>  Xmlp_in  = Xres[: Ind3] = [x2 , x3  + a2 , x4 ]

● The MLP's weight matrices are also pre-pruned to match the 
dimensions defined by Ind3 , Ind4  (intermediate), and Ind5 

Xmlp_out = MLP(Xmlp_in ) = [m1, m2, m3]

● IndexAdd for MLP Residual: We have Xres = [x1  + a1 , x2 , x3  + a2 , x4 ] 
and Ind5 = {0,1,3}

Xout  = [x1  + a1  + m1 , x2  + m2 , x3  + a2 , x4  + m3 ]

● This final Xout  is passed to the next block, still in the full d=4 
dimension, ready for the next block to select its own independent 
set of indices. This is how the structural dependence is broken.



Learning Which Indices to Prune - I

● How do we find the optimal index sets (Ind1  to Ind5 ) for every layer? The search space is enormous

● Problem: Choosing to keep or discard an index is a binary decision, which is non-differentiable. You 

can't use standard backpropagation to learn it.

● Proposed Solution: Use a gradient estimator. The paper uses ReinMax, which is a technique that 

allows gradients to be estimated and passed through discrete, binary operations. This essentially 

makes the non-differentiable selection process "trainable."

● Instead of learning separate parameters for every index in every layer, the authors use a small 

hypernetwork (composed of a GRU and linear layers) to generate the selection parameters for the 

entire model. This is allows the network to learn relationships between the pruning decisions of 

different layers



Learning Which Indices to Prune - II



Learning Which Indices to Prune - III
The hypernetwork is trained to minimize a combined objective function

where:

1. L is the standard language modeling loss (predicting the next word). This ensures the pruned model 

remains accurate

2. s represents the binary selection masks generated by the hypernetwork.

3. R is a regularization loss that penalizes the model if its current parameter count, T(s), is different 

from the target parameter count, pTtotal . This pushes the model toward the desired sparsity level

4. Θ represents the weights of the hypernetwork that we are optimizing



SliceGPT vs DISP-LLM



Results















Future Directions



● The throughput improvements from the method are not consistent across all models. Authors 

hypothesize that this is because the standard PyTorch implementations for index selection and 

addition operations are not fully optimized

● The current implementation focuses on selecting from feature maps, which involves indexing 

overhead during every forward pass. An alternative, and potentially faster, approach would be to 

pre-slice the weight matrices and use kernels that take advantage of zeroed rows/columns. 

● The hypernetwork itself could become a bottleneck in the search process for extremely large models.



Thank you + Q&A


