Cache-Efficient Top-k Aggregation
over High Cardinality Large Datasets

Microsoft Research

4th July, 2025

Presented by: Yash Bhisikar

Problem Statement

Given a table R, consisting of dimension attribute X and measure attribute Y, we want to
maximize the throughput of top-k aggregate queries with the following template:

SELECT X, AGG (Y) AS
ARROM R

GROUP BY X
ORDER BY A
LIMIT k

Primary focus is on monotonic aggregation functions such as COUNT(*), MAX(Y), MIN(Y),
and SUM(Y) with Y = 0. Assume a multi-core main memory system

Why is this a problem?

Standard methods compute exact
aggregates for all groups before
selecting the top k.

“"M"‘WMMWMWW Pverage Delvery AN Apotp 657 '()ld""OﬁlmwMWsrvsuk
¢ b

Top States by Sales Top Employees by Sales Top Employees by Avg Delivery

Catfornia [N 60M Nichotas.C [N 1ov coN [N ¢

Teas [46M Dorald R [N 1M Josua 8 [N .1
This is highly inefficient for large s I 370 ot I 0 o1 I
datasets with high cardinality, as the = N B
massive volume of intermediate | R
results overwhelms CPU caches, W N S e 5550
leading to excessive and slow data ‘ E*:g ::: 503: : ::Zu Z;ﬂ
movement between the cache and WIS i N i §444M

SOBM 2049% S1AM $4IM am

main memory.

Problem Setup and Assumptions

e Target Scenarios
o High cardinality: Millions of unique groups
o Large datasets: Hundreds of millions of records
o Top-k queries: k<< M (top-k value much smaller than total groups)
e Dataset Characteristics
o Assumption: N>>M>>C
o N:Dataset size (number of records), M: Number of unique groups, C: Cache capacity
e Aggregation Functions
o Primary focus: Monotonic functions (COUNT, SUM, MAX, MIN)
o Secondary: Non-monotonic functions (AVG)
e Data Access Pattern
o Noindexing or pre-partitioning on grouping attributes - works with raw data

Core ldea

Instead of full aggregation, the framework(called Zippy) leverages the inherent skew found in
real-world data. It uses an adaptive, multi-pass algorithm to:

1. Quickly identify a small set of candidate groups that are likely to be in the top-k results.

2. Perform exact, cache-efficient aggregation for only these candidates.

3. Cheaply prune the vast majority of non-candidate groups using efficient hashing and
partitioning, without needing to fully aggregate them.

This approach drastically reduces data movement and unnecessary computation.

The Algorithm

Three main phases

1.

Candidate Selection: A small sample of the data is analyzed to validate data skew and identify an initial set of
candidate groups for the Fine-grained Aggregates (FA) cache.
Multi-Pass Processing: The data is processed in passes. In each pass:

o Fine-grained Aggregates (FA): A cache-resident hash table is used to compute exact aggregates for the
candidate groups with high efficiency.

o Coarse-grained Aggregates (CA): Non-candidate groups are handled by a partitioning mechanism that only
computes lightweight statistics (sum, count, etc.) for each partition. This avoids expensive exact aggregation
for the vast majority of groups.

Merge & Prune: After each pass, results are merged across cores. A topKBound is calculated (the k-th highest
value seen so far). Any partition in the CA whose statistics guarantee it cannot contain a top-k result is pruned from

subsequent passes.

Algorithm Details | - Cache-Resident Structures

FA: Fine-grained Aggregates

e Stores exact aggregates for candidate groups
e Maintained in CPU cache for fast access

e Size limited by cache capacity

e Updated incrementally as data is processed

CA: Coarse-grained Aggregates

Partition-level statistics for pruning
Maintains bounds for each partition
Much smaller memory footprint

Enables early termination decisions

Cache Efficiency Benefits

e Hotdatastaysin cache
e Only process promising candidates
e Structures size based on available cache

// Initialize cache-resident structures
FA = new HashMap<GroupKey, Aggregate>(cache_size)
CA = new HashMap<PartitionId, Bounds>()

// Updating operations
updateFA(group, value) {
if (FA.contains(group)) {

FA[group].update(value)

}
}

updateCA(partition, bounds) {
CA[partition].updateBounds(bounds)
}

Algorithm Details Il - Candidate Sampling

Uniform Sampling: Each core scans its input data and selects a small, random sample of tuples. The sample size is
statistically determined to be representative. This step is extremely fast.

Skew Validation via Confidence Intervals:

Aggregates are computed on the sample data.

e For each group in the sample, a confidence interval is calculated for its true aggregate value (e.g., using
Hoeffding's inequality for SUM/COUNT).

e The algorithm checks if the distribution is sufficiently skewed. If the number of potential candidates (groups whose
lower-bound estimate is high) is too large to fit in the cache, Zippy determines optimization is not feasible and
reverts to a standard aggregation method.

Identifying FA Groups:

e If the skew is validated, groups with high lower-bound estimates are selected as candidates for the Fine-grained
Aggregates (FA) cache.

e To maximize efficiency, any remaining space in the FA cache is filled with "heavy hitters" (groups with the highest
frequency in the sample).

Algorithm Details Il - Candidate Sampling

function selectCandidates(dataset, k, confidence) {
sample = uniformSample(dataset, sample_rate)
sample_aggs = computeAggregates(sample)

candidates = []

for (group, agg in sample_aggs) {
upper_bound = computeUpperBound(agg, confidence)
candidates.add((group, upper_bound))

}

candidates.sort(by=upper_bound, descending=
return candidates.take(cache_capacity)

Algorithm Details Ill - Adaptive Partitioning and Pruning

For each partition of data, the algorithm makes an adaptive choice:

e Perform Exact Aggregation: If a partition has very few distinct groups or exhibits high data locality
(many occurrences of the same group are close together), it's more efficient to compute exact
aggregates for all groups within it directly.

e Perform Partitioning (for non-candidate groups): If exact aggregation is not viable, the algorithm
partitions the data for non-candidate groups. It adaptively chooses between:

o Logical Partitioning: This is the default and cheapest option. Only partition-level statistics are
maintained in a hash table. Tuples are not physically moved. This allows for rapid pruning if
the statistics are sufficient.

o Physical Partitioning: If a logical partition could not be pruned in a previous pass, the
algorithm escalates to physical partitioning, where tuples are actually moved into new,
co-located memory regions. This prepares the data for more efficient processing in later
passes.

Algorithm Details IV - Merge and Prune

e At the end of each pass, a global synchronization occurs.

o A topKBound is established, representing the current value of the k-th item in the result set.

o The key step is pruning: any partition whose coarse-grained statistics (e.g., the total sum of the
partition) prove it cannot possibly contain a group with an aggregate value greater than topKBound
is discarded entirely from all future processing.

e Pruning Mechanism:

o Maintain upper bounds for each partition

o Compare bounds with current k-th largest aggregate

o Prune partitions whose upper bound < k-th largest

o Process remaining partitions in order of potential

More details in the paper!

Parallelization

Rolling Top-k queries

Tuning the thresholds and ablation studies
Results

R

Thank You

